An Open Source Vibrotactile Haptics Platform for On-Body Applications.

Posted by Artem Dementyev, Hardware Engineer, Google Research

Most wearable smart devices and mobile phones have the means to communicate with the user through tactile feedback, enabling applications from simple notifications to sensory substitution for accessibility. Typically, they accomplish this using vibrotactile actuators, which are small electric vibration motors. However, designing a haptic system that is well-targeted and effective for a given task requires experimentation with the number of actuators and their locations in the device, yet most practical applications require standalone on-body devices and integration into small form factors. This combination of factors can be difficult to address outside of a laboratory as integrating these systems can be quite time-consuming and often requires a high level of expertise.

A typical lab setup on the left and the VHP board on the right.

In “VHP: Vibrotactile Haptics Platform for On-body Applications”, presented at ACM UIST 2021, we develop a low-power miniature electronics board that can drive up to 12 independent channels of haptic signals with arbitrary waveforms. The VHP electronics board can be battery-powered, and integrated into wearable devices and small gadgets. It allows all-day wear, has low latency, battery life between 3 and 25 hours, and can run 12 actuators simultaneously. We show that VHP can be used in bracelet, sleeve, and phone-case form factors. The bracelet was programmed with an audio-to-tactile interface to aid lipreading and remained functional when worn for multiple months by developers. To facilitate greater progress in the field of wearable multi-channel haptics with the necessary tools for their design, implementation, and experimentation, we are releasing the hardware design and software for the VHP system via GitHub.

Front and back sides of the VHP circuit board. Block diagram of the system.

Platform Specifications.
VHP consists of a custom designed circuit board, where the main components are the microcontroller and haptic amplifier, which converts microcontroller’s digital output into

This article is purposely trimmed, please visit the source to read the full article.

The post An Open Source Vibrotactile Haptics Platform for On-Body Applications. appeared first on Google AI Blog.

This post was originally published on this site