Artificial Intelligence

Self-Supervised Policy Adaptation during Deployment

Our method learns a task in a fixed, simulated environment and quickly adapts to new environments (e.g. the real world) solely from online interaction during deployment.

The ability for humans to generalize their knowledge and experiences to new situations is remarkable, yet poorly understood. For example, imagine a human driver that has only ever driven around their city in clear weather. Even though they never encountered true diversity in driving conditions, they have acquired the fundamental skill of driving, and can adapt reasonably fast to driving in neighboring cities, in rainy or windy weather, or even driving a different car, without much practice nor additional driver’s lessons. While humans excel at adaptation, building intelligent systems with common-sense knowledge and the ability to quickly adapt to new situations is a long-standing problem in artificial intelligence.

Read More »Self-Supervised Policy Adaptation during Deployment