Finding Complex Metal Oxides for Technology Advancement

Posted by Lusann Yang, Software Engineer, Google Research, Applied Science Team

A crystalline material has atoms systematically arranged in repeating units, with this structure and the elements it contains determining the material’s properties. For example, silicon’s crystal structure allows it to be widely used in the semiconductor industry, whereas graphite’s soft, layered structure makes for great pencils. One class of crystalline materials that are critical for a wide range of applications, ranging from battery technology to electrolysis of water (i.e., splitting H2O into its component hydrogen and oxygen), are crystalline metal oxides, which have repeating units of oxygen and metals. Researchers suspect that there is a significant number of crystalline metal oxides that could prove to be useful, but their number and the extent of their useful properties is unknown.

In “Discovery of complex oxides via automated experiments and data science”, a collaborative effort with partners at the Joint Center for Artificial Photosynthesis (JCAP), a Department of Energy (DOE) Energy Innovation Hub at Caltech, we present a systematic search for new complex crystalline metal oxides using a novel approach for rapid materials synthesis and characterization. Using a customized inkjet printer to print samples with different ratios of metals, we were able to generate more than 350k distinct compositions, a number of which we discovered had interesting properties. One example, based on cobalt, tantalum and tin, exhibited tunable transparency, catalytic activity, and stability in strong acid electrolytes, a rare combination of properties of importance for renewable energy technologies. To stimulate continued research in this field, we are releasing a database consisting of nine channels of optical absorption measurements, which can be used as an indicator of interesting properties, across 376,752 distinct compositions of 108 3-metal oxide systems, along with model results that identify the most promising compositions for a variety of technical applications.

Background
There are on the order of 100 properties of interest

This article is purposely trimmed, please visit the source to read the full article.

The post Finding Complex Metal Oxides for Technology Advancement appeared first on Google AI Blog.

This post was originally published on this site