**Mean First Passage Time based Q-Learning (MFPT-Q)**

We propose a hybrid approach aimed at improving the sample efficiency in goal-directed reinforcement learning. We do this via a two-step mechanism where firstly, we approximate a model from Model-Free reinforcement learning. Then, we leverage this approximate model along with a notion of reachability using Mean First Passage Times to perform Model-Based reinforcement learning. Built on such a novel observation, we design two new algorithms – Mean First Passage Time based Q-Learning (MFPT-Q) and Mean First Passage Time based DYNA (MFPT-DYNA), that have been fundamentally modified from the state-of-the-art reinforcement learning techniques. Preliminary results have shown that our hybrid approaches converge with much fewer iterations than their corresponding state-of-the-art counterparts and therefore requiring much fewer samples and much fewer training trials to converge. …

**GooStats**

texttt{GooStats} is a software framework that provides a flexible environment and common tools to implement multi-variate statistical analysis. The framework is built upon the texttt{CERN ROOT}, texttt{MINUIT} and texttt{GooFit} packages. Running a multi-variate analysis in parallel on graphics processing units yields a huge boost in performance and opens new possibilities. The design and benchmark of texttt{GooStats} are presented in this article along with illustration of its application to statistical problems. …

**Stochastic Inverse Reinforcement Learning (SIRL)**

Inverse reinforcement learning (IRL) is an ill-posed inverse problem since expert demonstrations may infer many solutions of reward functions which is hard to recover by local search methods such as a gradient method. In this paper, we generalize the original IRL problem to recover a probability distribution for reward functions. We call such a generalized problem stochastic inverse reinforcement learning (SIRL) which is first formulated as an expectation optimization problem. We adopt the Monte Carlo expectation-maximization (MCEM) method, a global search method, to estimate the parameter of the probability distribution as the first solution to SIRL. With our approach, it is possible to observe the deep intrinsic property in IRL from a global viewpoint, and the technique achieves a considerable robust recovery performance on the classic learning environment, objectworld. …

**Gapped-Kmer Support Vector Machine**

Oligomers of length k, or k-mers, are convenient and widely used features for modeling the properties and functions of DNA and protein sequences. However, k-mers suffer from the inherent limitation that if the parameter k is increased to resolve longer features, the probability of observing any specific k-mer becomes very small, and k-mer counts approach a binary variable, with most k-mers absent and a few present once. Thus, any statistical learning approach using k-mers as features becomes susceptible to noisy training set k-mer frequencies once k becomes large. To address this problem, we introduce alternative feature sets using gapped k-mers, a new classifier, gkm-SVM, and a general method for robust estimation of k-mer frequencies. To make the method applicable to large-scale genome wide applications, we develop an efficient tree data structure for computing the kernel matrix. We show that compared to our original kmer-SVM and alternative approaches, our gkm-SVM predicts functional genomic regulatory elements and tissue specific enhancers with significantly improved accuracy, increasing the precision by up to a factor of two. We then show that gkm-SVM consistently outperforms kmer-SVM on human ENCODE ChIP-seq datasets, and further demonstrate the general utility of our method using a Naive-Bayes classifier. Although developed for regulatory sequence analysis, these methods can be applied to any sequence classification problem. …