Yifeng Jiang, Research Intern and Jie Tan, Research Scientist, Robotics at Google
Simulation empowers various engineering disciplines to quickly prototype with minimal human effort. In robotics, physics simulations provide a safe and inexpensive virtual playground for robots to acquire physical skills with techniques such as deep reinforcement learning (DRL). However, as the hand-derived physics in simulations does not match the real world exactly, control policies trained entirely within simulation can fail when tested on real hardware — a challenge known as the sim-to-real gap or the domain adaptation problem. The sim-to-real gap for perception-based tasks (such as grasping) has been tackled using RL-CycleGAN and RetinaGAN, but there is still a gap caused by the dynamics of robotic systems. This prompts us to ask, can we learn a more accurate physics simulator from a handful of real robot trajectories? If so, such an improved simulator could be used to refine the robot controller using standard DRL training, so that it succeeds in the real world.
In our ICRA 2021 publication “SimGAN: Hybrid Simulator Identification for Domain Adaptation via Adversarial Reinforcement Learning”, we propose to treat the physics simulator as a learnable component that is trained by DRL with a special reward function that penalizes discrepancies between the trajectories (i.e., the movement of the robots over time) generated in simulation and a small number of trajectories that are collected on real robots. We use generative adversarial networks (GANs) to provide such a reward, and formulate a hybrid simulator that combines learnable neural networks and analytical physics equations, to balance model expressiveness and physical correctness. On robotic locomotion tasks, our method outperforms multiple strong baselines, including domain randomization.
A Learnable Hybrid Simulator
A traditional physics simulator is a program that solves differential equations to simulate the movement or interactions of objects in a virtual world. For this work, it is necessary to build different physical
This article is purposely trimmed, please visit the source to read the full article.
The post Learning an Accurate Physics Simulator via Adversarial Reinforcement Learning appeared first on Google AI Blog.