MIT Lincoln Laboratory wins nine R&D 100 Awards for 2021

Nine technologies developed at MIT Lincoln Laboratory have been selected as R&D 100 Award winners for 2021. Since 1963, this awards program has recognized the 100 most significant technologies transitioned to use or introduced into the marketplace over the past year. The winners are selected by an independent panel of expert judges. R&D World, an online publication that serves research scientists and engineers worldwide, announces the awards.

The winning technologies are diverse in their applications. One technology empowers medics to initiate life-saving interventions at the site of an emergency; another could help first responders find survivors buried under rubble. Others present new approaches to building motors at the microscale, combining arrays of optical fibers, and reducing electromagnetic interference in circuit boards. A handful of the awardees leverage machine learning to enable novel capabilities.

Field-programmable imaging array

Advanced imagers, such as lidars and high-resolution wide-field-of-view sensors, need the ability to process huge amounts of data directly in the system, or “on chip.” However, developing this capability for novel or niche applications is prohibitively expensive. To help designers overcome this barrier, Lincoln Laboratory developed a field-programmable imaging array to make high-performance on-chip digital processing available to a broad spectrum of new imaging applications.

The technology serves as a universal digital back end, adaptable to any type of optical detector. Once a front end for a specific detector type is integrated, the design cycle for new applications of that detector type can be greatly shortened.

Free-space Quantum Network Link Architecture

The Free-space Quantum Network Link Architecture enables the generation, distribution, and interaction of entangled photons across free-space links. These capabilities are crucial for the development of emerging quantum network applications, such as networked computing and distributed sensing.

Three primary technologies make up this system: a gigahertz clock-rate, three-stage pump laser system; a source of spectrally pure and long-duration entangled photons; and a pump-forwarding architecture that synchronizes quantum systems across free-space links with high precision. This architecture was successfully demonstrated over a 3.2-kilometer free-space atmospheric

This article is trimmed, please visit the source to read the full article.

The post MIT Lincoln Laboratory wins nine R&D 100 Awards for 2021 appeared first on MIT News | Massachusetts Institute of Technology.

This post was originally published on this site