Posted by Rose E. Wang, Student Researcher and Aleksandra Faust, Staff Research Scientist, Google Research
As robots become more ubiquitous in day-to-day life, the complexity of their interactions with each other and with the environment grows. In a controlled environment, such as a lab, multiple robots can coordinate their actions and efforts through a centralized planner that facilitates communication between individual agents. And while much research has been done to address reliable sensor-informed goal navigation, in many real-world applications aligning goals across independent robotic agents must be done without a centralized planner, which poses non-trivial challenges.
An example of such a challenging decentralized task is the rendezvous task, in which multiple agents must agree upon a time and place at which they can meet, without explicitly communicating with one another. This goal alignment task plays an important role in real world multiagent and human-robot settings, e.g., performing object handovers or determining goals on the fly. Solving the decentralized rendezvous task in this situation depends not just on the obstacles in the environment, but also the policies and dynamics of each agent. Addressing potential miscoordination and dealing with noisy sensor data depends on the agents’ ability to model the motions of other agents as well as their own, and to adapt to diverging intentions while using limited information.
An example of two independently controlled robots separated by obstacles that share the objective of meeting each other. How should they move in order to meet? Example trajectories are illustrated in red and blue arrows for each robot. Each robot makes an independent decision of where to go based on their own observations.
In “Model-based Reinforcement Learning for Decentralized Multiagent Rendezvous”, presented at CoRL 2020, we propose an holistic approach to address the challenges of the decentralized rendezvous task, which we call hierarchical predictive planning (HPP). This is a decentralized, model-based reinforcement learning (RL) system that
This article is purposely trimmed, please visit the source to read the full article.
The post Model-Based RL for Decentralized Multi-agent Navigation appeared first on Google AI Blog.