Which Mutual Information Representation Learning Objectives are Sufficient for Control?

Processing raw sensory inputs is crucial for applying deep RL algorithms to real-world problems. For example, autonomous vehicles must make decisions about how to drive safely given information flowing from cameras, radar, and microphones about the conditions of the road, traffic signals, and other cars and pedestrians. However, direct “end-to-end” RL that maps sensor data to actions (Figure 1, left) can be very difficult because the inputs are high-dimensional, noisy, and contain redundant information. Instead, the challenge is often broken down into two problems (Figure 1, right): (1) extract a representation of the sensory inputs that retains only the relevant information, and (2) perform RL with these representations of the inputs as the system state.

Figure 1. State representation learning for RL.

A wide

This article is purposely trimmed, please visit the source to read the full article.

The post Which Mutual Information Representation Learning Objectives are Sufficient for Control? appeared first on The Berkeley Artificial Intelligence Research Blog.

This post was originally published on this site